Dado que la ciencia de datos suele utilizar grandes conjuntos de datos, es extremadamente importante contar con herramientas que se puedan escalar con el tamaño de los datos, sobre todo para proyectos con estrechos márgenes de tiempo. Las soluciones de almacenamiento en cloud, como los lagos de datos, proporcionan acceso a infraestructura de almacenamiento y son capaces de ingerir y procesar grandes volúmenes de datos con facilidad. Estos sistemas de almacenamiento aportan flexibilidad a los usuarios finales y les permiten poner en marcha grandes clústeres si es necesario. También pueden añadir nodos de cálculo incremental para acelerar los trabajos de proceso de datos, y permitir a la empresa hacer concesiones a corto plazo a cambio de mayores resultados a largo plazo. Por lo general, las plataformas en cloud tienen diferentes modelos de precios, como los modelos por uso o las suscripciones, para atender las necesidades de sus usuarios finales, ya sean grandes empresas o pequeñas startups.
Sin embargo, las habilidades de un científico de datos suelen ser más numerosas que las de un analista de datos típico. A nivel comparativo, los científicos de datos utilizan lenguajes de programación comunes, como R y Python, para efectuar más inferencia estadística y visualización de datos. AutoAI, una nueva y potente capacidad de desarrollo automatizado en IBM Watson® Studio, que acelera la preparación de datos, el desarrollo de modelos y las etapas de ingeniería de funciones del ciclo de vida de la ciencia de datos. Esto permite que los científicos de datos sean más eficientes y les ayuda a tomar decisiones mejor informadas sobre qué modelos funcionarán mejor para los casos de uso reales.
Obtener conocimientos y habilidades
Es muy importante.Como la frase ‘el que no sabe a dónde va, cualquier camino le sirve’, y eso es muy cierto para tus proyectos”, dice. Puedes poner todo lo que ya has hecho y se convierte en un portafolio para que lo presentes al reclutador o en tus redes sociales y así la gente sepa lo que ya has desarrollado”, aconseja https://zacatecasonline.com.mx/tendencias/86286-bootcamp-programas-tripleten Serra. Cuantos más problemas puedas resolver, más experiencia tendrás, sin importar a qué universidad hayas ido. En esta búsqueda, puede encontrar artículos científicos sobre el tema e incluso encontrar a alguien que ya haya enfrentado el mismo problema y que haya compartido la solución que usó en Internet.
La plataforma de ciencia de datos de Oracle incluye una amplia gama de servicios que brindan una experiencia integral de principio a fin, diseñada para acelerar la implementación del modelo y mejorar los resultados de la ciencia de datos. Una plataforma de data science disminuye la redundancia e impulsa la innovación al permitir bootcamp de programación que los equipos compartan código, resultados e informes. Se eliminan los cuellos de botella del flujo de trabajo, ya que se simplifica la gestión y utilizan las mejores prácticas. Todas las empresas recopilan datos, y el trabajo del científico de datos utilizarlos para crear modelos predictivos que agreguen valor al negocio.
Descubre más sobre nuestro Máster en Big Data y Business Analytics
Si ya hiciste check en las anteriores habilidades blandas que te caracterizan como profesional, ahora hablemos de las habilidades duras o de los conocimientos técnicos y operativos que hacen a un especialista en data science. ¿Sabía que un 90% de las organizaciones considera que tener datos en la nube es esencial para su negocio? Según Enrico Galluccio, profesor del curso Big Data aplicada a los negocios, “se han generado más datos en los últimos dos años que en toda la historia de la humanidad”.